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Information theoretical approach to the storage capacity of neural networks with binary weights
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The storage capacity of the perceptron with binary weightswiP$0,1% is derived by introducing the minimum
distanced between input patterns. The approach presented in this paper is based on some results in the
information theory, and the obtained storage capacity 0.585 is in good agreement with the well-known value
0.59 by the replica method in statistical physics. A strength of the present information theoretical approach is
that it provides an easier and more intuitive understanding for the storage capacity than the replica method,
which is believed to be more reliable and informative than the Vapnik-Chervonenkis procedure.
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The storage capacities of artificial neural networks~ANN!
has been investigated by means of various concepts in m
ematical physics@1–3#. The replica method in statistica
physics@4# especially has succeeded in finding some stor
capacities concretely@5–7#. This replica method now be
comes the most useful tool to analyze the storage capa
and generalization ability of ANN@1–3,8–10#. ANN is ob-
viously one of the information transmissions, indicating th
it is natural to derive and understand these storage capac
of ANN in the framework of information sciences. The
already exists some information theoretical approache
obtain the storage capacities of ANN@11,12#, but most of
them do not succeed in obtaining them concretely. In
present paper, the storage capacity of the perceptron
binary weightswiP$0,1% is derived by introducing the mini
mum distanced between input patterns. We obtainedac
50.585 that should be compared with the well-known va
ac50.59 @9# by the replica theory, which means that th
ideas presented in this paper can be applied to the comp
tion of these storage capacities without the usual rep
method.

The perceptron is usually formulated by

y5sgnS (
i 51

n

wixi2u D ~1!

with weights wi( i 51, . . . ,n) and a threshold valueu for
each input pattern (x1, . . . ,xn) t and two-valued outputy
P$21,11% @1,2#.

Our main ideas are based on introducing the minim
distanced between input patterns. The introduction of th
parameterd helps in understanding the basic ingredient u
derlying the storage capacity as stated below. In orde
explain our ideas, we briefly review the definitions of t
capacities such as Vapnik-Chervonenkis~VC! capacity and
the storage capacity@13#.
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For the perceptron given by Eq.~1!, each input pattern
can be described as an-dimensional column vector:ux(k)&
[(x1

(k) , . . . ,xn
(k)) tP$0,1%n where the indexk denotes thekth

pattern. If the neural network can learn thekth input pattern
ux(k)&, then there exists a row vector ^w(k)u
[(w1

(k) , . . .wn
(k)) for the kth input patternux(k)& such that

the input-output relation is written asy(k)5sgn(̂ w(k)ux(k)&
2u) where^w(k)ux(k)&[( i 51

n wi
(k)xi

(k) is an inner product.
Let S(n,p)[$ux(1)&, . . . ,ux(p)&%,$0,1%n be any set ofp

different input patterns. For simplicity, we write downS for
S(n,p), if not necessary. The numberD(S) of different output
vectors (y(1), . . . ,y(p)) can be determined by Eq.~1! for any
setS. The growth functionD(p) and the typical growth func-
tion D typ(p) are defined by

D~p![ max
uSu5p

D~S!, D typ~p![mean
uSu5p

D~S!, ~2!

respectively, whereuSu represents the number of elements
a setS @13#. The Vapnik-Chervonenkis capacityaVC @14#
and the storage capacityac are, respectively, given by@13#

aVC[ lim
n→`

pVC

n
, ac[ lim

n→`

pc

n
, ~3!

wherepVC is the Vapnik-Chervonenkis dimension@15,16#

pVC[max$pPNuD~p!52p%, ~4!

andpc is a solution to

D typ~pc!

2pc
5

1

2
. ~5!

There is extensive literature on the VC capacity in a vari
of fields. @17–24#. Much of the previous works on the sto
age capacity has been discussed by means of the re
method@1–3,5–10#.

In the above definitions ofaVC andac , it is important to
emphasize that a setS does depend only onp. When we
consider the capacity of neural networks, it is natural to ta
p as a parameter in order to solve the following problem:~a!
4576 © 1999 The American Physical Society
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How many input patterns can neural networks learn? Un
tunately, little is known about the exact form ofD(S) as a
function of p, and it is thus difficult to find the distribution
D(S) with respect toS.

Therefore, we propose the minimum distanced among
input patternsSas a new parameter to characterizeS. Instead
of ~a!, we then address the following problem:~b! What is
the minimum distanced among input patterns that can b
learned by neural networks? For a neural network to le
the maximum number of patterns, there must exist a m
mum distanced for which the network distinguishes pattern
That is, the capacity can be considered to be dominated
the distinguishable minimum distance. After all, the intr
duction ofd can solve original problem~a!. What is better,
the information theory yields an exact formula of lower a
upper bounds on the maximum number of different inp
with d.

Before introducingd, we should take the following into
account:~i! What is the best representation of the input p
terns for the neural networks?~ii ! What is the best definition
of the distanced among the input patterns? The former is t
problem of coding of the information resources for the neu
networks, which is irrelevant to the computation of its cap
ity. This coding depends on what and how the neural n
works recognize, which can be also discussed in the in
mation theory. The latter is concerned with the definition
a distance that is often seen in any mathematical books
topology as a map satisfying the three conditions, nam
separability, symmetry, and trigonometric inequality. T
choice of the definition of a distance depends on what
neural networks can distinguish. In this paper we take
Hamming distanced as a typical distance among input pa
terns @25#. The Hamming distanced(ux(k)&,ux( l )&) between
any two input patternsux(k)& and ux( l )& is defined by
d(ux(k)&,ux( l )&)[( i 51

n (xi
(k)

% xi
( l )) where xi

(k)
% xi

( l )50(xi
(k)

5xi
( l )),1(xi

(k)Þxi
( l )). Using this distanced, we can corre-

spondA(n,d) to D(p) in the follwing manner.D(p) is the
maximum number of classifications of allS throughp input
patterns. On the other hand,A(n,d) represents the maximum
number of codewords in any binary input of lengthn and
minimum distanced in the information theory@25#. D(p)
can be characterized by the minimum distanced betweenp
input patternsS. Thus, for a givenp there must exist the
minimum distanced to satisfy

A~n,d!5D~p!. ~6!

Equation~6! gives d as a function ofp. However, Eq.~6!
cannot be solved, because the exact formula ofD(p) is un-
known. On the other hand, the exact expression of the up
and lower bound of lim

n→`
log2 A(n,d)/n are already known

as the famous formula@see Eq. ~9!# in the information
theory. Therefore, we introduce parameterd instead of the
usual parameterp in the sense that we can applyA(n,d) to
the computation of the storage capacity instead of the u
D(p). After this consideration, we concentrate on comput
the mean valueD typ(p), which is the average value o
A(n,d) with respect tox5d/n under the conditionuSu5p in
the rest of this paper.

The parameterp in the growth functionD(p) is regarded
as the lengthk of the information bits in a codeword with
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lengthn by the following considerations. In constructing a
error-correcting code@25#, any codeword consists ofinfor-
mation bitsandcheck bits, which represent the coded infor
mation resources and the redundancy for error correct
respectively. In the information theory the codeword w
length n consisting of information bitsk and check bitsn
2k is usually expressed by@n,k# code.

Any @n,k# code can represent 2k different codes, whose
number corresponds toD(p) given by Eq.~6!, that is,

2k5A~n,d!5D~p!. ~7!

The maximum number of information bitsk can be taken as
n, but in such a case (k5n) it becomes quite difficult to
distinguish these codewords~input patterns! because the dis
tance among codewords is too short to distinguish them.
same situation occurs in the neural networks. Increasing
parameterp in D(p) makes it more difficult to distinguishp
input patterns due to the short distance among them. T
result has been known as the Sauer’s lemma@15,26# in terms
of D~p!. Then,pVC ~the maximum number of input patterns!
should be equal tok(length of information bits). Finding the
information bitsk is equivalent to determining the number
represented codewords. The ratiok/n is called information
ratio in the information theory@25#. The largerk/n is, the
more codewords they can represent. From Eqs.~6! and ~7!,
k/n is written as

k

n
5

log2 A~n,d!

n
5

pVC

n
. ~8!

Note thatpVC can be expressed as a function ofd, that is,
pVC5 log2 A(n,d) from the above Eq.~8!.

The asymptotic bound onk/n for large n has been dis-
cussed in detail in the information theory@25#. The lower
and upper bounds are known to bethe Gilbert-Varshmov
bound and the McEliece-Rodemich-Rumesey-Welch bou,
respectively, given by

12H2S d

nD< lim
n→`

log2 A~n,d!

n
<BS d

nD , ~9!

where H2(x)[2x log2 x2(12x)log2(12x), B(d)
[min0,u<122d B(u,), B(u,d)[11h(u2)2h(u212du

12d), and h(x)[H2( 1
2 2 1

2 A12x). Figure 1 displaysk/n
(5pVC/n) as a function ofd/n

Since the lower and upper bounds decrease monoton
with d/n as seen from Fig. 1, there must existl(0<l<1)
satisfying

lim
n→`

pVC

n
5 lim

n→`

log2 An~x!

n
5l@12H2~x!#1~12l!B~x!,

~10!

where An(x)[A(n,d) and x[d/n, which we call a mini-
mum distance ratio. Here we definef n(x) and f (x):

f n~x![
log2 An~x!

n
, ~11!

f ~x![l@12H2~x!#1~12l!B~x!, ~12!



e
r

m

e

dis-
es a

for

nd

e

e

4578 PRE 60HIROKI SUYARI AND IKUO MATSUBA
respectively. Then from Eq.~10! we have

f ~x!5 lim
n→`

f n~x!. ~13!

Substituting Eq.~7! into Eq. ~11! yields

D~p!5An~x!52n fn(x). ~14!

Let rn(x) be a probability density function. Sinc
A(n,d)@5An(x)# is the maximum number of codewords fo
a fixedd, we can writeAn(x) in the form

E
x

0.5

rn~x8!dx85
An~x!

C
~15!

using a normalizationC. It is clear thatC5An(0)52n. Thus
D typ(p) can be described in terms ofrn(x) as

D typ~p!5E
0

xp
rn~x!D~Sx!dx, ~16!

whereSx is the set of input patternsS with a constant mini-
mum distance ratiox. Since there always exists a maximu
value of the minimum distance for a givenp, we denote a
maximum value ofx by xp . Instead of Eq.~5!, consider the
general case

D typ~pr !

2pr
5r , ~17!

where 0<r<1. For any xP@0,xp# we have D(Sx)52p.
Equation~17! is thus written as

E
0

xpr
rn~x!dx5r . ~18!

Equation~18! tells us the following interpretations for th
capacity of neural networks by means of a distanced: For
smallr (>0), the distinguishable minimum distance ratioxpr

is small (xpr
>0) from Eq. ~18!, where from Eq.~10! and

Fig. 1 lim
n→`

pr /n is large (lim
n→`

pr /n>1). In this case

FIG. 1. Asymptotic bounds on lim
n→`

log2 A(n,d)/n

(5 lim
n→`

pVC /n) as a function ofd/n for n→`.
neural networks can distinguish input patterns whose
tance between them is small, and thus the capacity tak
large value. On the other hand, for larger (>1), xpr

is large

(xpr
>0.5), where lim

n→`
pr /n is small (lim

n→`
pr /n>0).

If we succeed in finding the concrete expression
*0

xprn(x)dx in the limit of largen, it is an easy task to obtain
xpr

, from which we have lim
n→`

pr /n from Eq. ~10!.

To this end, we have

E
0

x

rn~x8!dx85
2n22n fn(x)

2n ~19!

from Eqs.~14! and ~15!. The right-hand side of Eq.~19! is
expanded to give

E
0

x

rn~x8!dx85~222 f n(x)!(
k51

n
2(k21) f n(x)

2k . ~20!

Any f n(x) satisfies 0< f n(x)<1. Substituting f n(x)50,
12«n , respectively, into the second factor of the right-ha
side, it is straightforward to show that

~222 f n(x)!(
k51

n

22k<E
0

x

rn~x8!dx8<~222 f n(x)!Kn ,

~21!

where lim
n→`

«n50 and Kn[(k51
n 2(«n212k«n). Both Eqs.

~20! and ~21! hold for any x, so that we can assume th
existence ofKn8 such as

E
0

x

rn~x8!dx85~222 f n(x)!Kn8 , ~22!

where(k51
n 22k<Kn8<Kn . Whenn→`, we get

E
0

x

r~x8!dx85~222 f (x)!K 8̀ , ~23!

where K 8̀ [ lim
n→`

Kn8 . Since the right-hand side of th

above Eq.~23! is probability,K 8̀ 51. Thus we obtain

E
0

x

r~x8!dx85222 f (x). ~24!

From Eqs.~18! and~24!, for a givenr we can derivexpr
by

only solving the equation,

222 f (xpr
)5r . ~25!

Using xpr
by Eq. ~25!, we get

lim
n→`

pr

n
5 f ~xpr

!. ~26!

For r 51/2 @see Eq.~5!# we have only to solve the following
equation:

222 f ~xpc
!
5 1

2 . ~27!
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For l51,0 we foundxpc
50.083, 0.153, respectively. In

both cases,f (xpc
)50.585. Therefore, we can conclude

ac5 lim
n→`

pc

n
5 f ~xpc

!50.585, ~28!

which agrees well with the well-known value 0.59@9# ob-
tained by the replica method forwiP$0,1%. In principle, it is
possible to obtainD typ(p) for simple multilayer networks.
in
Moreover, using the present method, it is unnecessary
think whether replica symmetry breaking shows up.

In summary, these information theoretical derivations
the storage capacity are completely different from the us
replica method. The present approach is undoubtedly ea
and more intuitive than the replica method. Moreover,
storage capacity for the case ofwiP$21,11% can be also
computed by easy transformation of this method and its
sult is also in agreement with the resultac50.83 obtained by
the replica theory@27#. This derivation will be presented in
our forthcoming paper@28#.
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