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Information theoretical approach to the storage capacity of neural networks with binary weights
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The storage capacity of the perceptron with binary weights{0,1} is derived by introducing the minimum
distanced between input patterns. The approach presented in this paper is based on some results in the
information theory, and the obtained storage capacity 0.585 is in good agreement with the well-known value
0.59 by the replica method in statistical physics. A strength of the present information theoretical approach is
that it provides an easier and more intuitive understanding for the storage capacity than the replica method,
which is believed to be more reliable and informative than the Vapnik-Chervonenkis procedure.
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PACS numbds): 87.10+e

The storage capacities of artificial neural netwdkIN ) For the perceptron given by Eql), each input pattern
has been investigated by means of various concepts in matban be described as radimensional column vectofx®)
ematical physic§1-3]. The replica method in statistical =(x{9, ... x{9)te{0,11" where the index denotes théth

physics[4] especially has succeeded in finding some storag@attern. If the neural network can learn tkid input pattern
capacities concretely5-7]. This replica method now be- |x(k)>, then there exists a row vector(w(k)|
comes the most useful tool to analyze the storage capacite (w{9, .. .w{) for the kth input patternx®) such that
and generalization ab|l|ty of ANl‘ﬂl—3,8—1Q ANN is ob- the input_output relation is written @S(k)zsgn«w(k)|x(k)>
viously one of the information transmissions, indicating that_ ) where(w®|x®)==" ,w®x® is an inner product.
it is natural to derive and understand these storage capacities | ot SP={|x®), ... |xPYLc{0,1" be any set ofp

of ANN in the framework of information sciences. There gitfarent input patterns. For simplicity, we write dov@for
already exists some information theoretical approaches (. if not necessary. The numba(S) of different output
obtain the storage capacities of ANN1,12, but most of vectors ¢V, ... y™Y can be determined by E€1) for any

them do not succeed in obtaining them concretely. In th. etS. The growth function (p) and the typical growth func-
present paper, the storage capacity of the perceptron wi fon AYP(p) are defined by

binary weightsw; € {0,1} is derived by introducing the mini-

mum distanced between input patterns. We obtained A(p)=maxA(S), AYP(p)=meanA(S), 2)

=0.585 that should be compared with the well-known value |sl=p Is|=p

a.=0.59 [9] by the replica theory, which means that the

ideas presented in this paper can be applied to the computtespectively, whergS| represents the number of elements in

tion of these storage capacities without the usual replic& setS[13]. The Vapnik-Chervonenkis capacity, ¢ [14]

method. and the storage capacity. are, respectively, given byl 3]
The perceptron is usually formulated by

. Pvc .
ayc= IlmT, a.= I|mF,

n—o n—ow

(3
YZSQ"(;WiXi—G) N

wherepy¢ is the Vapnik-Chervonenkis dimensi¢h5,16|

pvc=maxp e N|A(p)=27}, (4)
with weightsw;(i=1, ... n) and a threshold valu@ for
each input patternxg, ... x,)"' and two-valued outpuy  andp. is a solution to
e{—-1+1}[1,2].
Our main ideas are based on introducing the minimum AYP(p,) 1 5
distanced between input patterns. The introduction of this 2 2° 5)

parameted helps in understanding the basic ingredient un-
derlying the storage capacity as stated below. In order tdhere is extensive literature on the VC capacity in a variety
explain our ideas, we briefly review the definitions of the of fields.[17—-24. Much of the previous works on the stor-
capacities such as Vapnik-ChervonenRi&C) capacity and age capacity has been discussed by means of the replica
the storage capacityl 3]. method[1-3,5-10Q.
In the above definitions afyc and«., it is important to
emphasize that a s& does depend only op. When we
*Electronic address: suyari@ics.tj.chiba-u.ac.jp consider the capacity of neural networks, it is natural to take
"Electronic address: matsuba@ics.tj.chiba-u.ac.jp p as a parameter in order to solve the following probléan:
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How many input patterns can neural networks learn? Unforiengthn by the following considerations. In constructing an

tunately, little is known about the exact form Af(S) as a  error-correcting cod¢25|, any codeword consists afifor-

function of p, and it is thus difficult to find the distribution mation bitsandcheck bits which represent the coded infor-

A(S) with respect taS. mation resources and the redundancy for error correcting,
Therefore, we propose the minimum distarteamong respectively. In the information theory the codeword with

input patternsSas a new parameter to character&énstead length n consisting of information bitk and check bita

of (a), we then address the following probleiiiy) What is ~ —k is usually expressed Hyn,k] code

the minimum distanc&l among input patterns that can be  Any [n,k] code can represent2lifferent codes, whose

learned by neural networks? For a neural network to learmumber corresponds W (p) given by Eq.(6), that is,

the maximum number of patterns, there must exist a mini-

mum distancel for which the network distinguishes patterns. 2¥=A(n,d)=A(p). (7)

That is, the capacity can be considered to be dominated b

the distinguishable minimum distance. After all, the intro-

duction ofd can solve original problenta). What is better, M but in such a casekén) it becomes quite difficult to
the information theory yields an exact formula of lower angdistinguish these codewordimput patternsbecause the dis-

upper bounds on the maximum number of different inputstance among CodeworQS is too short to distinguish ther_n. The
with d. same situation occurs in the neural networks. Increasing the
Before introducingd, we should take the following into Parametep in A(p) makes it more difficult to distinguish

account:(i) What is the best representation of the input pat-NPut patterns due to the short dls'Eance among them. This

terns for the neural networks?) What is the best definition eSult has been known as the Sauer’s lenpb26 in terms

of the distancel among the input patterns? The former is the©f A(P). Then,pyc (the maximum number of input patteins

problem of coding of the information resources for the neurafhould be equal ta(length of information bits). Finding the

networks, which is irrelevant to the computation of its capacnformation bitsk is equivalent to determining the number of

ity. This coding depends on what and how the neural net!€Presented codewords. The rakin is calledinformation

works recognize, which can be also discussed in the inforfatio in the information theoryf25]. The largerk/n is, the

mation theory. The latter is concerned with the definition ofmore codewords they can represent. From E@sand (7),

a distance that is often seen in any mathematical books offn IS written as

topology as a map satisfying the three conditions, namely, Kk log, A(n.d)

separability, symmetry, and trigonometric inequality. The _:M:M_ (8)

choice of the definition of a distance depends on what the n n n

neural networks can distinguish. In this paper we take the , )

Hamming distancel as a typical distance among input pat- NOt€ thatpyc can be expressed as a functiondfthat is,

terns[25]. The Hamming distancel(|x®),[x")) between Pvc=10g2A(n.d) from the above Eq(8). _

any two input patterngx®) and |x®) is defined by The asymptotic boun_d ok/n f_or large n has been dis-

d(|x(k)>'|X(I)>)Ezin:l(xi(k)®xi(l)) where Xi(k)eaxi(l)zo(xi(k) cussed in detail in the information theo[_95]. The lower
and upper bounds are known to bee Gilbert-Varshmov

bound and the McEliece-Rodemich-Rumesey-Welch bpund

respectively, given by

he maximum number of information bikscan be taken as

=xM),1x=x". Using this distanced, we can corre-
spondA(n,d) to A(p) in the follwing mannerA(p) is the
maximum number of classifications of &lthroughp input

patterns. On the other han@i(n,d) represents the maximum d log, A(n,d) d

number of codewords in any binary input of lengihand 1—H2(ﬁ)$ IimTéB(—), 9

minimum distanced in the information theonf25]. A(p) n—oe

can be characterized by the minimum distaddeetweenp _

input patternsS. Thus, for a givenp there must exist the where HZ(X)Z_XIOgZX_(l_X)lOgZ(l;X)' 5 B(9)

minimum distanced to satisfy =MiNg<y=1-25B(u), B(u,9)=1+h(u%)—h(u"+24u
+26), andh(x)=H,(3—3y1—x). Figure 1 displaysk/n

A(n,d)=A(p). (6)  (=pyc/n) as a function ofd/n
) ) ) Since the lower and upper bounds decrease monotonally
Equation(6) givesd as a function ofp. However, EG.(6)  yjith d/n as seen from Fig. 1, there must exi0<\<1)
cannot be solved, because the exact formuld @) is un-  gagisfying
known. On the other hand, the exact expression of the upper

and lower bound of lim _log, A(n,d)/n are already known . Pve . logy Ap(x)

n— . . . lim—=lim———=\[1—-Hy(X)]+(1—\)B(x),
as the famous formuldsee Eq.(9)] in the information noe N s n
theory. Therefore, we introduce parametkinstead of the (10)

usual parametep in the sense that we can appi(n,d) to
the computation of the storage capacity instead of the usuahere A (x)=A(n,d) and x=d/n, which we call a mini-
A(p). After this consideration, we concentrate on computingmum distance ratio. Here we defifig(x) andf(x):
the mean valueAYP(p), which is the average value of
A(n,d) with respect tax=d/n under the conditiohS|=p in _logz An(x)
- fo(X)=—""7",

the rest of this paper. n

The parametep in the growth functiomA(p) is regarded
as the lengthk of the information bits in a codeword with f(X)=N1-Hy(X)]+(1—N\)B(x), (12

(11)



SIS

FIG. 1.
(=lim___pyc/n) as a function ofd/n for n—oco.

Asymptotic bounds on lim _log, A(n,d)/n

respectively. Then from Ed10) we have

f(x)=lim f(x). (13
n—oo
Substituting Eq(7) into Eq.(11) yields
A(p)=An(x)=2""0), (14

Let p,(x) be a probability density function. Since
A(n,d)[ =A,(X)] is the maximum number of codewords for

a fixedd, we can writeA,(x) in the form

05 nd ,An(X)
an(X)X— C

X

(19

using a normalizatio. It is clear thatC=A,(0)=2". Thus
AYP(p) can be described in terms pf(x) as

AYP(p)= foxppn(X)A(Sx)de (16)

whereS, is the set of input patternS with a constant mini-
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neural networks can distinguish input patterns whose dis-
tance between them is small, and thus the capacity takes a
large value. On the other hand, for lange=1), Xp, is large
(xprzo.S), where Iimnﬂm p,/n is small (Iimnﬁxp,/nEO).

If we succeed in finding the concrete expression for
f’gppn(x)dx in the limit of largen, it is an easy task to obtain
Xp. from which we have lim _ p,/n from Eq. (10).

To this end, we have

on_ 2nfn(x)

f:pn<x'>dx'= R (19

from Egs.(14) and (15). The right-hand side of Eq19) is
expanded to give

N o (k=1)fn(x)

X
J pa(x")dx' =(2—-2"00) ¥ ——p—.
0 k=1 2

(20

Any f,(x) satisfies @<f,(x)<1. Substituting f,(x)=0,
1-¢,, respectively, into the second factor of the right-hand
side, it is straightforward to show that

n
X
(2—2f00) >} 27k< f pa(x)dx' < (2= 200K,
k=1 0
(21)

where lim _e,=0 andK,=3X_,2(°n"17kn) Both Egs.

(20) and (21) hold for anyx, so that we can assume the
existence oK/, such as

X
fo pn(X')dx’ =(2—2M0) Ky, (22)
where=}_,2 ¥<K/<K,. Whenn—x, we get
X
| p0erdx = 2-2100k @3
0

where K;ElimnﬂmKr’]. Since the right-hand side of the

mum distance ratia. Since there always exists a maximum above Eq(23) is probability,K..=1. Thus we obtain

value of the minimum distance for a givgn we denote a
maximum value ok by x,. Instead of Eq(5), consider the
general case

AYP(p,)
2Pr =r,

7

where O<r<1. For anyxe[0x,] we haveA(S,)=2P.
Equation(17) is thus written as

JWMA{de=r. (18)
0

Equation(18) tells us the following interpretations for the

capacity of neural networks by means of a distadc&or
smallr (=0), the distinguishable minimum distance ratig

is small (x, =0) from Eg. (18), where from Eq.(10) and
Fig. 1 lim _p//nis large (lim _ p,/n=1). In this case

X
J.p(xﬁdx’=2——2“”. (24)

0

From Egs.(18) and(24), for a givenr we can derive<pr by
only solving the equation,

2-2"0%)=r. (25)
Usingx, by Eg.(25), we get
Pr
lim —==f(xp,) (26)

Forr=1/2[see Eq(5)] we have only to solve the following
equation:

2—2fp) =1 (27)
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For A=1,0 we foundx, =0.083, 0.153, respectively. In Moreover, using the present method, it is unnecessary to
both casesf(x, ) =0.585. Therefore, we can conclude think whether replica symmetry breaking shows up.
¢ In summary, these information theoretical derivations of
the storage capacity are completely different from the usual
. Pe replica method. The present approach is undoubtedly easier
ac= lim-—==1(x, )=0.585, (28 and more intuitive than the replica method. Moreover, the
e storage capacity for the case wfe{—1,+1} can be also
computed by easy transformation of this method and its re-
which agrees well with the well-known value 0.59] ob-  sultis also in agreement with the result=0.83 obtained by
tained by the replica method fer; € {0,1}. In principle, itis  the replica theory27]. This derivation will be presented in
possible to obtaimMYP(p) for simple multilayer networks. our forthcoming papef28].
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